点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:他们发现温度和触觉感受器
首页> 科技频道> 综合新闻 > 正文

他们发现温度和触觉感受器

来源:科技日报2021-10-08 09:53

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  左:戴维·朱利叶斯,1955年出生于美国纽约,1989年被加州大学旧金山分校聘为教授。

  右:阿德姆·帕塔普蒂安,1967年出生于黎巴嫩贝鲁特,现任美国斯克里普斯研究中心教授、霍华德休斯医学研究所研究员。

  人类面临的最大谜题之一,是我们如何感知环境,例如,眼睛如何探测光、声波如何影响我们的内耳、不同的化合物如何与鼻子和嘴巴中的感受器相互作用并产生气味和味道,还有太阳的炎热、风的抚摸……这些对温度、触觉和运动的印象对于我们适应不断变化的环境至关重要。

  在日常生活中,我们认为这些感觉是理所当然的,但是神经冲动是如何启动,从而感知温度和压力呢?今年的诺贝尔生理学或医学奖得主已经解决了这个问题。

  来自美国加州大学旧金山分校的教授戴维·朱利叶斯利用从辣椒中提取的辣椒素,识别出了皮肤神经末梢中对热做出反应的传感器。美国斯克利普斯研究所的阿德姆·帕塔普蒂安使用压敏细胞发现了一种新型传感器,可以对皮肤和内脏中的机械刺激做出反应。

  这些突破性的发现促进了我们对神经系统如何感知热、冷和机械刺激的理解。两位获奖者在我们对感官与环境之间复杂相互作用的理解中发现了关键的缺失环节。

  研究工作如辣椒般火热

  在20世纪90年代后期,朱利叶斯通过分析辣椒素如何引起身体的灼热感,看到了重大进步的可能性。已知辣椒素可以激活引起疼痛感的神经细胞,但这种化学物质如何真正发挥这种功能是一个未解之谜。

  朱利叶斯和他的同事创建了一个包含数百万个DNA片段的库,这些片段对应于在感觉神经元中表达的基因,这些基因可以对疼痛、高温和触摸做出反应。朱利叶斯和同事们假设,该基因库中应该包含一个DNA片段,可编码一种能够对辣椒素做出反应的蛋白质。

  经过艰难地搜索,他们发现了一个能够使细胞对辣椒素敏感的基因——辣椒素感应基因。该基因编码了一种新的离子通道蛋白,这种新发现的辣椒素受体后来被命名为TRPV1,是一种热敏受体,在令人感觉疼痛的温度下会被激活。

  TRPV1的发现是一项重大突破,为发现其他温度感应受体开辟了道路。

  朱利叶斯和帕塔普蒂安各自独立地使用化学物质薄荷醇来鉴定TRPM8,这是一种被证明可以被寒冷激活的受体。与TRPV1和TRPM8相关的其他离子通道被鉴定出来,它们可以在不同的温度范围被激活。

  在压力下研究“压力”

  虽然温度感觉的机制被发现了,但机械刺激如何转化为触觉和压力感仍不清楚。帕塔普蒂安希望确定被机械刺激激活的受体到底是什么。

  他与合作者首先确定了一种细胞系,当用微量移液管戳单个细胞时,该细胞系会发出可测量的电信号。他们识别出72个编码可能受体的候选基因,将这些基因一一灭活,以找出与机械敏感性有关的基因。

  他们成功地识别出了一种基因,该基因的沉默使细胞对微量移液器的戳刺不敏感。一种全新的、完全未知的机械敏感离子通道被发现,并被命名为Piezo1,取自希腊语中“压力”一词。接着,他们发现了与Piezo1相似的感觉神经元表达高水平的第二个基因,命名为Piezo2。进一步的研究证实Piezo1和Piezo2是离子通道,通过对细胞膜施加压力而直接激活。

  除了对触觉至关重要,Piezo2离子通道还在对身体位置和运动感知(即本体感觉)中发挥关键作用。此外,Piezo1和Piezo2通道还可以调节其他重要的生理过程,包括血压、呼吸和膀胱控制。

  一切发现都是值得的

  今年的诺贝尔奖获得者对TRPV1、TRPM8和Piezo通道的开创性发现,让我们了解了热、冷和机械力如何引发神经冲动,使我们能够感知和适应周围的世界。TRP通道是我们感知温度能力的核心;Piezo2通道赋予我们触觉和感知身体部位位置和运动的能力。TRP和Piezo通道还有助于许多额外的生理功能,这些功能依赖于感知温度或机械刺激。

  由朱利叶斯和帕塔普蒂安的发现而引发的科学研究正紧锣密鼓地展开,科学家们正专注于阐明它们在各种生理过程中的功能。这一发现也正被用于开发治疗各种疾病如慢性疼痛的方法。(记者 张佳欣)

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 乌鲁木齐水上乐园大熊猫馆试运营

  • 欢天喜地过大年

独家策划

推荐阅读
莱州中华武校第十次登上央视春晚舞台
2026-02-17 10:21
近日,一个名为Moltbook的社交平台突然走红。与普通网络平台不同的是,Moltbook上的用户都是AI智能体。
2026-02-14 09:21
全球规模最大的200万吨/年柴油吸附分离装置目前在中国石油广西石化稳定运行。
2026-02-14 09:16
大连理工大学赵珺教授带领师生团队正抓紧时间,为实现可重复使用运载火箭关键部件的“复用检测”技术突破全力冲刺。
2026-02-14 09:12
一场刷新人类对宇宙极端物理过程认知的高能事件,被中国科学卫星清晰捕获并成功解读。
2026-02-14 09:11
近日,中国计量科学研究院研制的锶原子光晶格钟NIM-Sr1正式获准校准国际标准时间,实现了我国光钟参与校准国际标准时间“零”的突破。
2026-02-14 09:10
装上智能仿生手,截肢患者可以轻松拿起水杯喝水;高位截瘫患者用意念移动电脑光标,操控轮椅,指挥机器狗取外卖……
2026-02-13 09:50
凌晨2时,南昌西动车组运用一所检修库内灯光如昼。“接触网已断电,安全措施准备完毕,申请登顶!”确认许可后,国铁南昌局电务段南昌西车载设备车间工长曹准与工友一前一后登上动车组车顶,对北斗天线进行全面“体检”。
2026-02-13 09:45
近日,广西涠洲岛海域发生渔船撞击布氏鲸事件,鲸鱼受伤的画面令人揪心。虽然撞鲸的并非观鲸船,但这起事件也给正处于旺季的观鲸游敲响警钟——负责任地观鲸,有边界地亲近,人与自然和谐共生图景才能真正长久。
2026-02-13 09:43
核光钟通过真空紫外激光诱导原子核跃迁,具备更高精度与强抗干扰能力,且可实现便携化应用。但研制核光钟的道路上的一个核心瓶颈,是无法研制出能激发核跃迁的连续波激光光源。
2026-02-13 09:42
2021年,王勤团队开始研发低成本、适用于牧场环境的马匹体形自动测定设备。王勤团队搜集了全球90个马群体、近40个品种的基因组信息,构建了包含2000多个个体的参考面板——这是目前全球规模最大的马基因组参考数据库。
2026-02-13 09:36
一纸锦旗山水间,杏林春暖绿意长。
2026-02-12 11:01
金星与地球大小相近,同样诞生于太阳系内侧,却有着截然不同的命运。
2026-02-12 09:41
科技部十司相关负责同志解读《调查处理规定》。
2026-02-12 09:38
《细胞》封面:猕猴屏状核细胞分类与全脑联接图谱。在当前脑图谱大科学计划研究目标迈进绘制非人灵长类介观脑图谱的关键阶段,中国科学家仍在进一步集聚全球力量,持续扩大“朋友圈”。
2026-02-12 09:25
据悉,在战略上,植物星球计划还将整体提升全球生物多样性保护和实现碳中和的生态能力,构建植物科学领域全球大科学命题国际合作的新格局。
2026-02-12 09:17
马年将至,作为一种兼具力量与速度的动物,马正受到格外的关注。
2026-02-12 09:12
工业和信息化部等五部门近日印发《关于加强信息通信业能力建设支撑低空基础设施发展的实施意见》。加强监管能力体系建设,规划无人机专用号段,推动“一机一码一号”能力建设,探索标识解析在无人机领域的应用,形成无人机通信资源精细化管理。
2026-02-11 09:25
全球森林逐渐被快生树木主导,而稳定生态系统的慢生树种正在消失。“我们关注的是极为独特的物种,它们主要集中在生物多样性丰富、生态系统联系紧密的热带和亚热带地区。“此外,在现在和未来受到干扰的地区,非本地物种可能会加剧对光、水和养分的竞争,从而使本地树木更难生存。
2026-02-11 09:32
中国科学院动物研究所研究员王红梅带领的“灵长类胚胎发育的规律解析与体外模拟团队”,用27年的接力攻坚,把灵长类早期胚胎发育这个看不见、摸不着的“黑匣子”,变成了清晰可见的“生命剧本”。
2026-02-11 09:32
加载更多