点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:最小的一滴水有多少个水分子
首页> 科技频道> 综合新闻 > 正文

最小的一滴水有多少个水分子

来源:科技日报2021-02-25 09:31

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  ◎李存璞

  一滴水大约为0.05毫升,约10万亿亿个水分子。半滴水0.025毫升,5万亿亿个水分子。那么,半滴水还算一个水滴么?如果半滴水算,那半滴水的半滴呢?如此细分下去,终点将是一个水分子。那么,一个水分子能算是一滴水么?如果不算,那最少要多少个水分子才可称为一滴水?

  2020年年底,发表在英国皇家化学会旗舰期刊《化学科学》上的一项研究,报告了答案:米兰理工大学的科学家发现,21个水分子组成的分子团,与宏观的一滴水的光谱基本吻合。也就是说,最少需要21个水分子才可以组成一滴水。

  光谱让水分子说话

  我们不妨从一个水分子的视角,来思考这个问题:假设在一滴水中随机挑选一个水分子,我们叫它W。尽管0.05毫升的一滴水中大约有1021个水分子,但真正围绕在W周围的水分子并不多。

  我们把W转移出来,在其周围不断增加水分子,直到W觉得,周围的水分子似乎跟之前一样多了。此时W相信,自己处在一滴水中。于是W和增加的水分子这个整体,就可以被定义为最小的一滴水。这一过程被称为W的溶剂化。

  但W究竟是怎么想的,我们并不知道。得想个办法让W告诉我们,它是不是在一滴水中。

  幸运的是,水分子每时每刻都处于不断的运动当中,这被称为分子振动。每一种分子振动的能量不同。我们可以用光谱学方法,来侦测各类振动的频率,就如同耳朵听不同频率的声音一样。

  水分子的振动光谱与其周围的其他水分子密切相关。我们可以利用光谱学这一工具来观察,随着周围水分子个数增加,W的分子振动如何变化。当W的分子光谱与宏观上水滴的光谱一致时,我们也就找到了最小的这滴水。

  不过,科学家迄今还没有掌握在一个水分子周围精确增加水分子的技术,而且一个水分子的分子光谱信号太弱,根本没有办法侦测到。科学家发现,通过计算机建立模型,就可以模拟得到在W周围添加水分子时,它的光谱如何变化。

  化学中对分子的模拟主要有两个方向。一个方向是利用量子力学方法模拟系统中每一个分子,包括分子中每一个原子、电子的量子相互作用,计算量巨大,这种方法主要用于研究分子的静态特性。另一个方向是利用分子动力学方法,将分子想象成是刚性原子用弹簧连接而成,分子之间的作用主要考虑静电相互作用,计算量小,可以方便模拟分子振动这样的动态过程。

  W的分子振动自然是动态过程,需要使用分子动力学方法来实现。另一方面,因为水分子之间是氢键相互作用,又不得不同时考虑量子力学效应。因此,化学家将两种方法结合,来计算W的光谱信息。

  寻找最小的水滴

  米兰理工大学的化学家在对比光谱学计算与实验测得的光谱后发现,当W周围有4个水分子(即5个分子组成的团)时,它的外围已经包裹了一层完整的水分子层,分子光谱也与一滴水的光谱比较接近,但还有一些偏差。

  他们进一步增加W外围水分子的个数,发现当有20个水分子,即形成21个水分子的分子团时,计算得到的W分子光谱与实验值吻合得很好。这说明W此时已经认为自己真的在一滴水中了。于是,研究人员得出结论:最小的这滴水由21个水分子组成。

  从极小到极大,现代科学关注自然各个尺度的现象。一方面,科学家不断将研究目标缩小,小到原子核内部的质子、夸克;另一方面,也不断将研究目标放大,大到整个星系、宇宙。而在这小和大的中间,存在许多跨尺度的有趣现象。

  比如,21个水分子组成的纳米尺度下的一滴水,在一定程度上具备宏观上一杯水的特征。又比如,厚度仅为一层碳原子、径度却可延展到几米的石墨烯,具有优异的电学、力学性能。另比如,电子转移仅需10-12秒,但电池充电却需要数小时。这些跨越时空尺度的问题,沟通了物质的微观组成与宏观性质。

  而微观和宏观的界限在哪里,常常不是那么分明。比如在一块晶体中,晶胞可以被认为拥有晶体很多宏观性质,但多少个-CH2-重复出现才能算一个聚乙烯分子,似乎就很难严格定义了。因为水是生命体系最重要的溶剂,也是很多化学和物理变化的介质,我们找到水分子到宏观水滴的这个界限,或许可以帮助更好地认知和模拟生命体,理解更多的化学物理过程。

  (来源:科普中国中央厨房)

[ 责编:武玥彤 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 贵平高速公路通车在即

  • 西安:“大唐之旅”焕新升级

独家策划

推荐阅读
传统探查手段在如此深的地下几乎“失明”,无法精准捕捉地质特征。这项工程的成功实施,填补了我国超深埋输水隧洞注浆治理技术的空白,标志着我国在深埋地下工程地质探查与注浆治理领域达到国际领先水平。
2025-12-25 09:42
24日上午,随着最后一方混凝土浇筑完成,宁波舟山港六横公路大桥二期工程——青龙门特大桥双主塔成功封顶。青龙门特大桥位于浙江舟山,横跨青龙门水道,连接宁波梅山岛与舟山佛渡岛。
2025-12-25 09:45
24日,我国最大超深凝析气田——中国石油塔里木油田博孜—大北气田天然气年产量突破100亿立方米,生产凝析油91.89万吨。为攻克上述难题,塔里木油田持续攻关,推动气田开发实现从深层向超深层、从高压向超高压、从优质储层向复杂储层的三大跨越。
2025-12-25 09:44
前不久,“科学家预测恐龙复活有望实现”的话题冲上热搜,引起舆论关注。
2025-12-25 10:20
一项研究显示,科学家发现新物种的速度比以往任何时候都快——每年发现的新物种超过1.6万个,并且这一趋势没有放缓的迹象。除了医学,许多物种的适应特性还可以启发人类的发明创造,例如模仿壁虎垂直爬墙的“超强黏附”脚的材料。
2025-12-25 09:47
”这是中国科学院院士、北京航空航天大学研究生院原副院长高为炳生前在自述中留下的一句话。而在高为炳的学生看来,他之所以能在短时间内取得那么多成绩,根源就在于几十年的厚积薄发。
2025-12-25 09:46
昆虫性信息素相当于昆虫之间的“气味语言”,具有靶向性强、用量少、对环境友好等优点,是当前绿色植保的重要策略之一。
2025-12-24 10:05
作为中国科学院“十四五”重大项目之一,2022年7月27日,由中国科学院力学研究所(以下简称力学所)抓总研制的“力箭一号”火箭首飞成功。
2025-12-24 09:59
中国科学技术大学(以下简称中国科大)教授潘建伟、朱晓波、彭承志和副教授陈福升等基于超导量子处理器“祖冲之3.2号”,在码距为7的表面码上实现了低于纠错阈值的量子纠错,演示了逻辑错误率随码距增加而显著下降。
2025-12-24 09:58
为加快推进知识产权强国建设,日前,国家知识产权局会同有关部门编制完成《知识产权强国建设发展报告(2025年)》。
2025-12-24 09:57
国家能源局23日发布11月全国电动汽车充电设施数据。
2025-12-24 09:57
我国自主设计建造的全球首制甲醇双燃料动力智能超大型油轮“凯拓”轮22日在辽宁大连成功交付。
2025-12-23 09:54
中国科学院大连化学物理研究所副研究员方光宗、研究员潘秀莲团队在乙炔氢氯化制氯乙烯研究领域取得新进展。
2025-12-23 09:53
《自然》杂志网站12月18日刊发文章,展望了2026年值得关注的科学事件,涉及人工智能(AI)、基因编辑和太空探索等多个领域。中国计划于2026年发射嫦娥七号探测器,目标是在布满岩石与陨石坑、着陆难度极大的月球南极附近着陆。
2025-12-23 09:52
9月30日,中国科学院上海应用物理研究所原所长徐洪杰去世半个月后,一场以追思和战略研讨为主题的“务虚会”在研究所召开。
2025-12-23 09:47
种子是“农业芯片”。精准设计育种这盘大棋,在科技工作者手中,正下得风生水起。
2025-12-23 03:05
12月17日,《自然》发布2025年值得关注的七大暖心科学故事,从基因编辑的多项突破,到传染病的快速防控,再到政策层面的重大胜利,都让人们为这一年感到高兴。
2025-12-22 09:57
记者21日从中国科学院大连化学物理研究所获悉,该所研究员李先锋团队在溴基多电子转移液流电池新体系研究方面取得新进展。
2025-12-22 09:56
微波加热,是维持“人造太阳”——全超导托卡马克核聚变实验装置(EAST)上亿摄氏度高温的核心技术之一。
2025-12-22 09:52
12月19日,《科学》在线发表了这项由中国科学家领衔的重要研究成果。
2025-12-22 09:50
加载更多