点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:结构微调,让古老酶种也能“吃”塑料
首页> 科技频道> 综合新闻 > 正文

结构微调,让古老酶种也能“吃”塑料

来源:科技日报2021-07-14 09:41

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  科学家经过研究推论出,细菌为快速适应堆积的PET废弃物,在古老的角质酶中导入突变,使之转变成高效的PET降解酶。这个发现为创制更多优质PET降解酶提供了有效策略。

  塑料废弃物在环境和生态系统中造成的污染,已经成为不可忽视的严重问题。聚对苯二甲酸乙二酯(PET)是生产与消耗量最多的塑料之一,大多数矿泉水瓶就是用PET作为原料。PET废弃物主要以掩埋或焚烧法来处理,但掩埋法无法彻底消除PET,焚烧则会产生温室气体造成二次污染。

  记者7月10日从湖北大学生命科学学院、省部共建生物催化与酶工程国家重点实验室获悉,该实验室郭瑞庭教授与陈纯琪教授团队,经过研究推论出,细菌为快速适应堆积的PET废弃物,在古老的角质酶中导入突变,使之转变成高效的PET降解酶。这个发现为创制更多优质PET降解酶提供了有效策略,目前团队已生产出多个新型PET降解酶,为发展生物降解塑料开辟了新途径。相关研究成果已发表在权威期刊《自然·催化》上。

  有种细菌能“吃”塑料

  PET的塑料分类代号为1号,全球年产量已近7000万吨。PET防水、耐热、抗酸碱腐蚀,所以大量被用来制作食品饮料的包装瓶/盒和人造纤维。目前,PET的回收率仅有10%左右,且较常使用的物理或化学回收处理方法都具有局限性。因此,发展温和绿色的生物降解法来处理PET废弃物,是人类社会寻求可持续发展的重要方向。

  PET为聚酯大分子,理论上有可能被降解酯键的酶所水解,然而大量的芳香环以及结构致密的结晶区,使得PET对于酶降解作用具有非常强的抗性,因此寻找更为有效的PET降解酶是开发生物降解PET技术的核心。

  塑料的性质稳定,一般认为需要数百年的时间才可能被自然分解。2016年,日本科学家在PET回收处分离出了一株能“吃”PET的细菌— Ideonella sakaiensis,该细菌能分泌一种将PET水解成小分子的酶——IsPETase,分解后的小分子还可以被细菌吸收利用。

  “IsPETase是目前为止唯一一个通过自然演化过程产生的真正意义上的PET降解酶。然而,IsPETase并不是一个全新的酶种,而是属于一种古老的角质酶,原本的作用是微生物用来分解植物角质的。”郭瑞庭介绍,古老的角质酶分解PET的活力非常低,但IsPETase却能够很好地分解PET。细菌如何把角质酶转变成PET降解酶,其中的奥秘始终没有被揭露。

  该团队长期从事蛋白质结构与功能分析,于2017年在国际上公布了首个IsPETase的晶体结构与酶和底物类似物的复合体结构。郭瑞庭介绍:“通过比对IsPETase与角质酶的蛋白质结构,我们发现角质酶的底物结合区较为狭窄,比较适合作用于形状细长的角质,而不利于作用在构造较为宽大的PET上。”

  “制造”高效降解塑料的酶

  为寻找更多具有降解PET活性的酶,团队发现,IsPETase底物结合区的组成与角质酶是一样的,但IsPETase底物结合区的W185(色氨酸)可以自由摆动。当PET结合到IsPETase上时,W185会被往下压低一些,如此一来底物结合区的空间就变得较为开阔,也才能够容纳PET。所有的角质酶在相对的位置都具有这个色氨酸,但这个色氨酸侧链的方向都是被固定住的,不能自由摆动。

  为什么同样的色氨酸,在两种相似的酶里面会展现不同的构象变化呢?这么细微的差异,真的是造成IsPETase与角质酶降解PET活力高低不同的关键因素吗?

  团队进一步分析色氨酸邻近的区域发现,在所有角质酶中,色氨酸下方有组氨酸与苯丙氨酸这2个侧链较大的氨基酸(以下简称大二元体)支撑着,它们就像支架一样固定住了色氨酸使其无法转动。而在IsPETase中W185下方则是丝氨酸和异亮氨酸(以下简称小二元体),它们的侧链基团较小,固定不住W185,因此W185就能自由摆动,IsPETase的底物结合区也就能够“伸缩自如”了。

  有趣的是,将IsPETase的小二元体换成大二元体, PET降解的活性就会大幅下降,反之将角质酶中的大二元体换成小二元体,降解PET的活性就会大幅提升。由此可知,大小二元体的转换极有可能就是产生PET降解酶最关键的条件。“考查密码子可以发现,只需要突变3个碱基就能够将大二元体变成小二元体。”郭瑞庭说,而累积3个突变位点是有可能在短时间之内发生的——只需导入小二元体即可。这种快速的转变,就像川剧里的“变脸”一样。

  这些研究结论表明,微生物在短时间内选择了突变角质酶来分解PET,这可能是产生PET降解酶快速有效的途径。此外,导入小二元体能创制更多优质PET降解酶,团队已经利用这个方法获得了多个新型的PET降解酶,用这些酶,科学家将研发出更多生物可降解塑料。(陈 曦)

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 西安东站金属屋面顺利封顶

  • 探访上海首家银发商店 感受银发经济新活力

独家策划

推荐阅读
从中国地质调查局获悉,由该局广州海洋地质调查局自主研发的国内首台海底地层空间立体钻探与原位监测机器人,日前在南海1264米水深海域成功完成试验作业,各项性能全面达标,标志着我国深海勘探与地层原位监测技术取得重要突破。
2026-01-16 03:45
15日,国际学术期刊《自然》发表中国科研团队重大成果——由中国科学院大学主导、广西大学等多单位联合攻关的团队,首次直接观测到中子碰撞中的米格达尔效应,为人类搜寻轻暗物质粒子打开关键突破口,标志着我国在基础物理与探测器技术领域跻身国际前沿。
2026-01-16 03:45
15日12时01分,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功将阿尔及利亚遥感三号卫星A星发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。
2026-01-16 03:45
进一步促进青年科技人才脱颖而出,需要凝聚多方合力、强化协同联动,从制度供给、环境营造、资源倾斜等方面精准施策、一体推进。
2026-01-16 03:45
展望未来,随着相关实践的不断普及和深化,数智赋能的流动公共服务将更加可及、公平普惠、精准高效,并为推进国家治理体系和治理能力现代化注入更多动能。
2026-01-16 03:45
中国医学科学院血液病医院(中国医学科学院血液学研究所)主任医师施均、研究员熊海清为通讯作者,博士后李若难、主治医师潘虹、主治医师张乐乐和研究生马佳秀为共同第一作者。
2026-01-16 09:04
他们提出一种全新多物理域融合计算系统,可利用后摩尔新器件支持傅里叶变换,使算力提升近4倍,为具身智能、通信系统等领域开辟新的可能。
2026-01-15 04:05
2025年11月,中国载人航天工程启动第一次应急发射任务,并取得圆满成功。此次任务,源于神舟二十号飞船疑似遭到空间微小碎片的撞击,返回任务被迫按下紧急“暂停键”。
2026-01-15 04:55
现代人工智能是先进计算的产物,也是赋能千行百业的技术。从早期符号主义在有限算力下的踯躅前行,到神经网络思想历经沉浮,直至大数据与图形处理器(GPU)的邂逅,
2026-01-15 04:55
项目骨干成员、中国科学院大学教授郑阳恒表示,团队还将与暗物质探测实验团队合作,将此次实验结果融入下一代探测器的研发中。
2026-01-15 09:03
对于娱乐及部分消费产业而言,当前的人形机器人还不适合作为长期自有资产,更适合通过“租赁+技术服务”的方式使用。
2026-01-15 09:02
最终,他们模拟出一种外形稳定的氰化氢晶体,其外形为顶端多面、底部圆润的圆柱体,长度约450纳米,整体形状类似切割后的宝石。
2026-01-15 09:00
从中国地震局获悉,近日,在离岸80千米的三峡江苏大丰海上风电场,全国首个海底综合地震电磁监测台站建成,这标志着我国地球物理场监测台网向海域拓展取得新进展。
2026-01-15 04:05
你有没有感觉,这些年的春天来得越来越不规律了?相比过去,有的地方春来早,有的地方春迟到。这不是你的错觉,全球变暖正导演着一场波及整个北半球的“春日变奏曲”。
2026-01-14 02:55
布局未来产业,要统筹经济性与战略性,综合考虑绝对优势和比较优势,深耕细分赛道,探索各具特色的发展路径和模式。
2026-01-14 09:03
实现了育种加代方法的颠覆性创新,整体上达到国际领先水平。
2026-01-14 19:12
相关研究成果发表于《植物生物技术》,为光信号驱动的绿色农业技术创新提供了全新思路。
2026-01-14 19:12
“十四五”以来,生态环境部卫星遥感监测能力显著提升,目前已在轨运行7颗生态环境卫星,初步构建起多星联动的生态环境卫星遥感监测体系。
2026-01-14 09:03
作为钢铁生产核心工序,高炉占生产总成本的70%左右,其长期稳定运行直接关系企业盈利状况。经过攻关,宝钢股份高炉AI大模型对炉温等关键指标的预测准确率达90%,实现对内部状态的高精度、高时效性感知。
2026-01-14 09:02
1月13日23时25分,我国在海南商业航天发射场使用长征八号甲运载火箭,成功将卫星互联网低轨18组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。
2026-01-14 09:01
加载更多