点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:为了看清宇宙,希望建设更多“天眼”
首页> 科技频道> 综合新闻 > 正文

为了看清宇宙,希望建设更多“天眼”

来源:科技日报2021-10-29 10:03

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  13年前,“光谱之王”郭守镜望远镜(以下简称LAMOST)横空出世;6年前,暗物质粒子探测卫星“悟空”号划破苍穹;2021年,中国天眼500米口径球面射电望远镜(以下简称FAST)面向全球开放;未来,冷湖天文观测基地、空间站巡天望远镜将给我们带来更多的惊喜……

  当前,中国天文学迎来了历史上最好的发展机遇。我国天文学如何抓住机遇实现领跑?“悟空”号、“慧眼”号等飞向太空的望远镜将看到哪些精彩绝伦的景象?“留守”地球的LAMOST、FAST等又如何发挥光学、射电的优势?近日,在与科技日报记者的对话中,中国科学院院士、中国科学院国家天文台台长常进阐述了自己的思考。

  人类进入了空间天文时代

  科技日报记者:在大众的眼中,天文学总与浪漫的星辰联系在一起,具体到您的研究方向空间天文学,似乎又是另一个世界了。您能否先讲讲什么是空间天文学?它与传统的地面天文学之间有哪些不同?

  常进:随着技术的进步,天文学研究已经进入了全波段时代。首先,我们要理解什么是全波段。根据波长,可以把电磁辐射分为射电、红外线、可见光、紫外线、X射线和伽马射线。全波段时代就意味着,我们对于天体的研究不再局限于传统的可见光波段,而是拓展到从射电到伽马射线的全波段。

  其次,电磁辐射是怎样产生的?辐射产生的物理原因多种多样,比如宇宙有磁场,当带电粒子在磁场中偏转时就会发生同步扩散,进而产生电磁波。当磁场增强、粒子能量增加时可能会产生X射线、伽马射线等。所以,通过在不同的波段观测宇宙,可以看到天体的不同物理过程。

  最后,为什么要进入空间?这是因为大部分电磁波无法穿越地球大气,比如科学家想要观测天体发出的红外线,但大气把红外线吸收掉了,在地面观测不到天体发射的红外线,所以必须把望远镜放到大气顶部,也就是到空间去观测,这就是空间天文学。

  此外,由于大气湍流运动会影响光的传播,为了降低大气的影响,光学望远镜也会被送到天上去。比如我们熟知的哈勃空间望远镜,它虽然在地面上也能实现观测,但进入空间之后,其2.4米的口径可以达到地面10米口径望远镜的观测水平,获得了更高的角分辨能力。这样,人类就进入了空间天文时代,也就是全波段时代,所有电磁波段都可以被监测到。

  科技日报记者:“悟空”号是我国将望远镜送到空间去的一项全新探索,它实现了国际首次利用空间实验对100 TeV的宇宙线质子能谱的精确测量。今年9月,“悟空”号又发布了首批伽马光子科学数据,伽马光子与暗物质有着怎样的联系?对伽马光子的数据开展研究,将为“看”到暗物质作出什么贡献?

  常进:发射“悟空”号,主要目的是高分辨观测宇宙高能粒子和高能伽马射线。伽马射线是频率特别高的电磁波,因为大气会对其产生吸收,只能到空间去观察。

  虽然时至今日,我们还不清楚暗物质的物理特性,但根据理论模型推测,暗物质可能会衰变或者湮灭产生高能伽马射线。所以,我们通过研究伽马射线去间接探测暗物质粒子。另外,由于伽马射线是不带电粒子,不会被宇宙磁场影响,它的传输路径不会发生偏转。因此,我们通过研究伽马射线的空间分布,或许可以进一步定位暗物质的起源。

  但是,高能伽马射线的流量特别低,“悟空”号每天只测到1—2个。想要获得伽马射线的能谱和空间分布情况需要大量数据,所以,“悟空”号经过了3年的积累才向世界发布。即使这些数据还不够多,我们希望通过向全世界公开共享卫星数据,让全球科学家共同挖掘其科学价值。

  期待未来光学巡天发展

  科技日报记者:有专家提出,未来十年是光学巡天的黄金时代,国际上也早就建设了10余台8—10米口径的光学望远镜,从您的分析来看,我国光学巡天还需要从哪些方面着力?

  常进:我国的光学巡天还在起步阶段。一般来讲,望远镜分为专用和通用,早期由于我国经济实力不强,即使是2米级的通用望远镜也仅有两台,一台是位于河北兴隆观测基地的2.16米望远镜,一台是位于中国科学院云南天文台的2.4米望远镜。而拥有4米口径的LAMOST是一台专用望远镜,它只能做光谱巡天,观测银河系中的恒星,还没有进入到更深宇宙。

  科技日报记者:近期关注度颇高的冷湖天文观测站,是否体现了光学巡天领域我国“自己的计划”?

  常进:冷湖是中国科学院国家天文台在我国中西部寻找到的最适合光学巡天的地点。光学天文要求大气透明度高、夜光背景小,这样的地点不是很容易找到。一方面,人类活动越来越密集,晚上的背景光很强,很难看到很暗的星空。另一方面,光学巡天不仅要求大气透明度高,还要求大气稳定,大气湍流会使光线发生偏移,导致我们观测到的星星是闪烁的。但是我们需要宁静的星星,这样在望远镜的照相底片上就会呈现一个点,对研究最有利。天文学家用视宁度来描述大气背景,冷湖是0.75角秒,与国际最佳台址同期数据大致相同。

  冷湖的规划中,中国科学技术大学和中国科学院紫金山天文台计划在2—3年内共建,落成2.5米大视场巡天望远镜。未来,还有可能在冷湖建设12米大型光学红外望远镜以及清华大学的6.5米宽视场光谱巡天望远镜。

  但是冷湖并不是无限大的,需要天文学家提前做好规划,不能盲目发展,不能使它无序化。

  科技日报记者:LAMOST位于河北兴隆,距离北京非常近,它的气象条件能满足光学巡天的要求吗?未来是否有搬迁到冷湖的计划?如果搬迁,其后LAMOST在设计上会发生变化吗?

  常进:北京发展太快导致兴隆的背景光比20年前增加了几十倍,有时甚至上百倍,所以LAMOST也只能搬到更远的地方去,目前正在计划将它搬到冷湖。搬迁后它的设计是否发生变化现在还在讨论中,最简单的方法是保持原状,只是搬过去。但由于LAMOST已经工作10多年了,我们还是获得了一些经验和教训,我们希望可以进一步改进它,包括光学设计、口径等。

  望远镜建设前景可期

  科技日报记者:为打造我国天文自主生态,您认为,在国家整体规划和顶层设计上应该做怎样的考虑?

  常进:我国这几年天文学发展很快,但总体上与国际水平还有较大差距。现在是射电天文一枝独秀,光学天文与国际水平相差比较大。

  在射电天文领域,我国掌握了大型望远镜的建造技术,国家的工业实力也能够实现这些技术,所以在建设射电望远镜方面困难小一点。就FAST来说,现在它在射电低频波段的观测能力已经达到了世界第一,这得益于几代科学家的努力,其实它还有很大的提升空间,我们希望在更高的频段探索建设FAST阵。

  现在的“天眼”望远镜相当于“独眼龙”,可以看到很微弱的东西,但是这个微弱的东西究竟长什么样,一只眼睛看得还不是很清楚,所以我们希望有更多的“天眼”去看。在FAST阵建成后,其灵敏度不仅能超过平方公里阵射电望远镜的第一阶段(SKA1),未来还有可能超过第二阶段(SKA2)。

  所以,我们掌握了FAST的关键技术,知道了如何做大望远镜,再加上贵州省得天独厚的地形地貌,可以很快地用比较便宜的价格使其达到高灵敏度和高角分辨水平,希望在未来,FAST阵可以在射电天文领域实现世界领先。

  科技日报记者:在光学领域有怎样的规划?

  常进:在光学领域,全国的天文学家正在讨论望远镜的建设计划,近期希望建设12米大型光学红外望远镜。另外,我国还即将发射空间站巡天望远镜,我们称之为中国的“哈勃”,它的视场可以达到哈勃空间望远镜的300倍。

  光学望远镜,尤其是空间站巡天望远镜的建造,耗资更庞大,要求科学家必须要认真、踏实地走好每一步,才能使望远镜达到预设指标,发挥更好的效用。但是要达到革命性突破,更关键的是要掌握先进的关键技术,所以还要先在实验室中取得突破。

  当然,天文研究的国际合作也十分重要。今后我国要加入SKA天文台等国际大科学计划,并发展FAST阵等以我国为主的国际大科学计划,这也将成为我国天文学发展的一个重要途径。

  当前的背景下,望远镜将会越建越多,相信中国天文未来的发展也一定会更加美好。(记者 毕文婷 翟玉梅)

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 走进浙江宁波余姚井头山遗址

  • 浙江绍兴:年宵花卉迎新年

独家策划

推荐阅读
传统探查手段在如此深的地下几乎“失明”,无法精准捕捉地质特征。这项工程的成功实施,填补了我国超深埋输水隧洞注浆治理技术的空白,标志着我国在深埋地下工程地质探查与注浆治理领域达到国际领先水平。
2025-12-25 09:42
24日上午,随着最后一方混凝土浇筑完成,宁波舟山港六横公路大桥二期工程——青龙门特大桥双主塔成功封顶。青龙门特大桥位于浙江舟山,横跨青龙门水道,连接宁波梅山岛与舟山佛渡岛。
2025-12-25 09:45
24日,我国最大超深凝析气田——中国石油塔里木油田博孜—大北气田天然气年产量突破100亿立方米,生产凝析油91.89万吨。为攻克上述难题,塔里木油田持续攻关,推动气田开发实现从深层向超深层、从高压向超高压、从优质储层向复杂储层的三大跨越。
2025-12-25 09:44
前不久,“科学家预测恐龙复活有望实现”的话题冲上热搜,引起舆论关注。
2025-12-25 10:20
一项研究显示,科学家发现新物种的速度比以往任何时候都快——每年发现的新物种超过1.6万个,并且这一趋势没有放缓的迹象。除了医学,许多物种的适应特性还可以启发人类的发明创造,例如模仿壁虎垂直爬墙的“超强黏附”脚的材料。
2025-12-25 09:47
”这是中国科学院院士、北京航空航天大学研究生院原副院长高为炳生前在自述中留下的一句话。而在高为炳的学生看来,他之所以能在短时间内取得那么多成绩,根源就在于几十年的厚积薄发。
2025-12-25 09:46
昆虫性信息素相当于昆虫之间的“气味语言”,具有靶向性强、用量少、对环境友好等优点,是当前绿色植保的重要策略之一。
2025-12-24 10:05
作为中国科学院“十四五”重大项目之一,2022年7月27日,由中国科学院力学研究所(以下简称力学所)抓总研制的“力箭一号”火箭首飞成功。
2025-12-24 09:59
中国科学技术大学(以下简称中国科大)教授潘建伟、朱晓波、彭承志和副教授陈福升等基于超导量子处理器“祖冲之3.2号”,在码距为7的表面码上实现了低于纠错阈值的量子纠错,演示了逻辑错误率随码距增加而显著下降。
2025-12-24 09:58
为加快推进知识产权强国建设,日前,国家知识产权局会同有关部门编制完成《知识产权强国建设发展报告(2025年)》。
2025-12-24 09:57
国家能源局23日发布11月全国电动汽车充电设施数据。
2025-12-24 09:57
我国自主设计建造的全球首制甲醇双燃料动力智能超大型油轮“凯拓”轮22日在辽宁大连成功交付。
2025-12-23 09:54
中国科学院大连化学物理研究所副研究员方光宗、研究员潘秀莲团队在乙炔氢氯化制氯乙烯研究领域取得新进展。
2025-12-23 09:53
《自然》杂志网站12月18日刊发文章,展望了2026年值得关注的科学事件,涉及人工智能(AI)、基因编辑和太空探索等多个领域。中国计划于2026年发射嫦娥七号探测器,目标是在布满岩石与陨石坑、着陆难度极大的月球南极附近着陆。
2025-12-23 09:52
9月30日,中国科学院上海应用物理研究所原所长徐洪杰去世半个月后,一场以追思和战略研讨为主题的“务虚会”在研究所召开。
2025-12-23 09:47
种子是“农业芯片”。精准设计育种这盘大棋,在科技工作者手中,正下得风生水起。
2025-12-23 03:05
12月17日,《自然》发布2025年值得关注的七大暖心科学故事,从基因编辑的多项突破,到传染病的快速防控,再到政策层面的重大胜利,都让人们为这一年感到高兴。
2025-12-22 09:57
记者21日从中国科学院大连化学物理研究所获悉,该所研究员李先锋团队在溴基多电子转移液流电池新体系研究方面取得新进展。
2025-12-22 09:56
微波加热,是维持“人造太阳”——全超导托卡马克核聚变实验装置(EAST)上亿摄氏度高温的核心技术之一。
2025-12-22 09:52
12月19日,《科学》在线发表了这项由中国科学家领衔的重要研究成果。
2025-12-22 09:50
加载更多