点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:高能中微子来自黑洞?
首页> 科技频道> 综合新闻 > 正文

高能中微子来自黑洞?

来源:光明网-《光明日报》2023-10-26 03:45

  撰文:菲尔·普莱(Phil Plait) 翻译:赵剑琳

  在众多亚原子粒子中,中微子是一个奇怪的存在。与人们熟知的电子和质子等粒子不同,幽灵般的中微子几乎不会与其他物质发生任何相互作用:它们能直接穿过行星,就好像行星根本不存在一样。这就使得探测它们变得极其困难,更难的则是要从茫茫宇宙中找出这些中微子究竟来自何方。不过,最近发表在《科学》上的一项研究,找到了这些亚原子粒子在银河系之外的一处来源。

  天文学家首次从NGC 1068星系确切地探测到了中微子,这个星系的中心有一个巨大且活跃的黑洞。中微子是在黑洞的“不归点”——事件视界——之外产生的,我们还不清楚它具体是如何产生的,但此前一直有几种可能的理论解释。科学家希望这项发现不仅能改变他们对NGC 1068的认知,还能改变他们对所有此类星系的认知。此外,他们认为这一发现还可能揭示天空中随处可见的微弱中微子光芒的来源。

  落向黑洞的物质首先会形成一个扁平的、围绕黑洞旋转的吸积盘。物质间的摩擦会把吸积盘加热到惊人的高温,使它发出耀眼的光芒,亮度甚至会超过整个宿主星系。我们将这种星系称为“活跃星系”,它们是宇宙中最亮的天体之一。

  但对于NGC 1068来说,要探测到这种耀眼的光芒是很难的,因为基本上所有的光和信号都被厚厚的、不透明的宇宙尘埃云吸收了。在这种情况下,中微子最令人困惑的特性反而成为了优点:它们可以穿透这些尘埃云,飞入太空,最终到达地球。不过,我们依然要解决探测的难题——当中微子毫无痕迹地穿过探测器时,该如何测量它们呢?好消息是,并非所有的中微子都会如此,虽然情况非常罕见,但确实有些中微子会与物质发生相互作用,不过要观测到这种现象,需要借助非常特殊的天文台。

  冰立方中微子天文台(IceCube Neutrino Observatory)就是这样一个天文台,它几乎正好位于地球的南极点。“冰立方”不属于标准的天文设施,它不像天文望远镜那样使用反射镜来收集并聚焦来自宇宙天体的光线。相反,它采用了一系列相对简单的光学传感器,它们被数十根垂直的线悬挂着,形成一个由5000多个传感器组成的三维阵列,可以探测闪光发生的位置和时间。

  特别的是,“冰立方”深埋在南极洲冰层一千米之下。穿过冰层的中微子有很小概率撞上冰层中的氧原子或氢原子的原子核。这种撞击实际上是非常罕见的:对于地球上任意立方厘米大小的物质,每秒钟都有数万亿个中微子从中穿过,但要隔几天才能捕捉到一次中微子与这些物质发生的可测量的物理相互作用。

  中微子和原子核发生碰撞时会产生高速的亚原子“弹片”粒子,它们以略低于光速的速度远离碰撞点,然后穿过冰层。最有趣的是,它们在冰层中穿行的速度会超过光。不过,这并没有打破物理定律。真空中的光速的确是宇宙中的速度极限,但光在穿过介质时速度会慢下来。因此,粒子在真空中的运动速度不可能超过光速,但它们在物质中的运动速度却可以比光在物质中的速度更快。当这种情况发生时,就会产生“光爆”,就好像物体以超音速穿过空气时产生的冲击波一样。这些速度超过光的事件表现为明亮的蓝光闪烁,也可以称为切伦科夫辐射。透过透明的南极冰层,我们可以在一定距离内观测到它们。当然,“冰立方”的探测器也可以捕捉到它们。

  这种现象让科学家能够探测到来自太空的中微子事件,同时也会遇到一些干扰,因为其他事件也会产生相似的信号。例如宇宙中其他来源的亚原子粒子——宇宙射线——撞击地球大气层时就会产生类似的闪光,从而混淆观测结果。不过,科学家可以用一种巧妙的方法来区分这两种信号:地球本身就可以充当一个巨大的过滤器。来自太空的中微子可能来自各个方向,包括穿透地球。而宇宙射线只会从南极天文台上方的天空射来,因为它们无法像中微子那样直接穿过地球。“冰立方”的探测器可以过滤掉来自上方的事件,从而确保科学家只保留来自宇宙的中微子撞击。

  “冰立方”总共探测到了数百万个中微子,但似乎最多只有几百个是来自真正的宇宙天体。宇宙中的某些事物必然是这些中微子的来源。问题是,它们是什么?

  冰立方实验室是一个由科学家、工程师、数据分析师等专家组成的庞大研究团队,他们精心分析了探测器从2011年到2020年间采集到的数据。研究人员利用捕捉到的闪光方向信息追踪来自宇宙的中微子轨迹,他们发现天空中有几个点在统计意义上似乎是中微子的主要来源。

  那么,探测到最多中微子的来源究竟是哪里?在统计数据所在的时间跨度内,总共接收到了从NGC 1068方向发射过来的79个(~+-20)中微子。

  这个美丽的螺旋星系离我们相对较近——只有4700万光年,而且亮度足以用双筒望远镜观测到。对冰立方中微子的早期分析工作就指出,NGC 1068是一个可能的中微子来源。但当时的数据还不够有力,不足以证实这一点,而最新的结果改变了这一状况。

  探测到这个活跃星系是中微子的确切来源是一个重大的发现。在天文学家眼中,中微子具有惊人的高能量——每个中微子的能量都超过了1太电子伏特,相当于星系发出的可见光光子能量的数万亿倍。要产生如此高能的粒子,需要一个极为高能的宇宙粒子加速器,而一个处于活跃进食期的黑洞恰好能为它提供几种可能的来源。

  一种可能是,在围绕着黑洞的吸积盘上下方都有着温度极高的电离气体湍流,它具有强大的磁场,可以将巨大的能量注入粒子,将它们加速到接近光速。另一种可能性是吸积盘中的磁场会在黑洞附近发生扭曲,形成龙卷风般的双重漩涡,这种漩涡被称为喷流,可以将粒子高速抛出。此外,带电粒子喷流相互撞击时产生的冲击波也能为高能中微子提供所需的能量,而NGC 1068中就存在这种喷流。

  目前在地球上探测到的来自NGC 1068的中微子不到100个,不过它们在穿越浩瀚宇宙空间时很可能会被稀释。有鉴于此,天文学家推断黑洞周围产生的中微子总数应该非常巨大,它们携带的总能量可能是太阳释放的约十亿倍。

  这些观测结果还为另一个谜团的答案提供了重要线索。从宇宙各个角落来到地球的中微子在天空中形成了一种背景辉光,但它们的来源一直难以确定。通过“冰立方”的数据,我们还发现了来自其他几个活跃星系的中微子(尽管统计上的确定性不如NGC 1068),而在整个宇宙中这样的星系多达数百万个。新数据表明,如果这些星系也像NGC 1068那样发射出中微子,那么这些更遥远的星系就可能是中微子辉光的来源,这与我们在夜晚看到的银河类似,它也是由天空中各个恒星发出的光相互混淆在一起,从而形成我们肉眼可见的景象。

  就在不久之前,我们还只知道两个确定为中微子来源的天体:一个是太阳,其核心的聚变反应会产生中微子;另一个是超新星SN 1987A,它距离地球相对较近,曾发生过一次短暂的中微子闪光,然后就消失了。

  宇宙中每一个大星系的核心都有一个超大质量黑洞,并且它们都有可能处于活跃状态。但是,尽管它们在宇宙中非常普遍,却难以观测。天文学家已经探测到其中至少一个,甚至是几个黑洞释放出的中微子,这为我们了解这些巨大的怪物打开了一扇新的窗口。

  (本版图文由《环球科学》杂志社供稿)

  《光明日报》(2023年10月26日 14版)

[ 责编:孙琦 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 文化中国行 | 西安城墙的数字守护人

  • 浙江杭州:市民手写春联福字迎新春

独家策划

推荐阅读
CES历来是观察前沿技术走向的重要窗口。今年,一个新词被频频提及——“物理人工智能(物理AI,Physical AI)”。
2026-01-08 18:29
从7日在京召开的全国知识产权局局长会议上了解到,根据世界知识产权组织最新发布的《2025年全球创新指数报告》,我国“综合排名进前十、单项排名‘双第一’”。
2026-01-08 02:20
近日,中央农村工作会议在北京召开。会议强调,“加强农业关键核心技术攻关和科技成果高效转化应用,因地制宜发展农业新质生产力”,为做好“三农”工作提供了重要指引。
2026-01-08 02:20
时序轮转一甲子,肇始于一间实验室的中国科技考古,历经六十载深耕求索,终从一片学术荒原,昂首跻身世界学科前沿之列。六十年来,中国科技考古依靠工作者们的汗水、智慧与坚守,写成一段传奇。
2026-01-08 02:20
冰冷坚硬的金属骨架、精确运转的齿轮电机……这,是不是你脑中的“机器人”?其实,还有一种机器人:它们没有坚硬的躯壳,而是以柔软的身体探索世界,它们并不强壮,却不会轻易损坏——这,就是软体机器人。它们像章鱼、蚯蚓、水母等自然界生物一样灵动,能够弯曲、伸展、钻入狭缝,展现出前所未有的环境适应力。
2026-01-08 02:25
近日,工业和信息化部正式公布我国首批L3级有条件自动驾驶车型准入许可,两款分别适配城市拥堵、高速路段的车型将在北京、重庆指定区域开展上路试点。
2026-01-08 02:25
“激光不是自然光,它是人类创造的‘最准的尺’‘最利的刀’,更是能为人类需求精准调光的‘魔法师’。”1月6日,科学家精神百场讲坛在扬州大学开讲,中国科学院院士、天津大学教授姚建铨向现场听众分享了自己60年的科研历程与心得。
2026-01-07 02:30
以前医生判断大脑是否健康,需要进行磁共振检查,这个检查结果用的是西方人群的参考标准。
2026-01-07 02:30
从中国科学院大连化学物理研究所获悉,“面向空间应用的锂离子电池电化学光学原位研究”项目已在中国空间站内开展。神舟二十一号航天员乘组共同在轨操作该项目实验,其中,中国科学院大连化学物理研究所研究员张洪章作为载荷专家发挥了其专业优势。
2026-01-08 02:20
硫化氢气味如臭鸡蛋,在天然气开采、炼油、煤化工中大量产生。它不仅有毒,更是形成酸雨的“元凶”之一。据统计,我国每年待处理的硫化氢约80亿立方米,全球规模更是巨大。如何安全、彻底地处理它,一直是工业界面临的巨大挑战。
2026-01-07 02:30
从生态环境部获悉,日前,南京环境科学研究所秦卫华、李中林、王涛研究团队在《布拉格国家昆虫博物馆馆报》上发表研究成果——西藏吉隆发现猎蝽科猛猎蝽属新物种吉隆猛猎蝽,我国青藏高原生物多样性数据库再添新成员。
2026-01-07 02:30
“人类工程与大自然的完美融合!”不久前,贵州花江峡谷大桥刚刚建成通车便火遍全网,各地游客纷至沓来,只为感受新晋世界第一高桥的壮观雄伟。
2026-01-07 02:30
“一张网”的构建是我国测绘地理信息事业转型升级的生动实践。
2026-01-06 09:53
具身智能作为人工智能与机器人科学交叉的前沿领域,是新一轮产业变革的技术引擎。
2026-01-06 02:45
我国首次航天员洞穴训练日前在重庆市武隆区圆满结束,28名航天员参加了这次训练。
2026-01-06 02:45
近日,国务院办公厅印发《关于加快场景培育和开放推动新场景大规模应用的实施意见》,意见明确要求构建高水平矿山安全生产智能化应用场景。
2026-01-06 03:05
拔尖创新人才的培养成长,与平台和环境密切相关。记者注意到,与长期以来以竞赛选拔为主导的“关门培养”模式不同,近年来越来越多的中学、高校开始设立新型实验班。这些实验班面向更多学子敞开大门,以综合素质培养为落脚点实施个性化育人,为拔尖创新人才成长发展开辟了新空间。
2026-01-06 03:05
我是一名铁路机车调试工,在中国中车株洲电力机车有限公司干了33年,摸过超过一千万根线缆,听过约十万次受电弓升起的声音。这些年,我带过不少刚毕业的学生,也面试过很多从院校走出来的年轻人。他们理论扎实、认真仔细,但一上手调试真车,常常“当场犯懵”。我发现一个问题:学校教的和现场用的,中间隔着一道“看不见的墙”。
2026-01-06 03:05
面对市场机遇,产业链上市公司正加速卡位布局,以技术升级主动迎接L3级自动驾驶的商业化浪潮。
2026-01-05 09:13
接下来,我们计划测量能量范围更为宽泛的质子能谱,最终覆盖4个量级的能量区间。
2026-01-05 09:08
加载更多