点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:北极之谜:海底岩浆丰富还是极度贫瘠?
首页> 科技频道> 综合新闻 > 正文

北极之谜:海底岩浆丰富还是极度贫瘠?

来源:中国科学报2024-09-10 10:23

  超慢速扩张洋中脊的岩浆是极度贫瘠还是丰富,一直以来都是困扰科学家的难题。传统观点认为,超慢速扩张洋中脊的岩浆供给极度贫瘠。然而,最新的研究成果颠覆了这一观点。

  近日,《自然》在线发表了中国工程院院士、自然资源部第二海洋研究所研究员李家彪领衔,中国科学院南海海洋研究所、南方科技大学、法国巴黎地球物理研究所等单位科学家合作的最新成果。他们首次在极端的北极环境中,发现超慢速扩张洋中脊的岩浆活动存在超强变化,部分区域的地壳甚至厚达9000米。

  “这打破了之前国际上关于北极高纬度密集冰区无法进行海底地震仪探测的论断,颠覆了学术界一直认为的‘超慢速扩张洋中脊岩浆供给极度贫瘠’的观点,完善了地球板块边界动力学理论。”论文共同作者、中国科学院南海海洋研究所特聘研究员林间对《中国科学报》表示,该发现填补了国际研究空白。

  探究“最后一块拼图”

  深海洋中脊是地球表面最长的海底山脉,是洋壳与大洋板块诞生的地方,孕育了大量矿产资源。地球上的超慢速扩张洋中脊山脉,分别位于偏远的西南印度洋与北极之下。早在2003年,林间就与合作者对西南印度洋中脊进行了探测,提出了超慢速扩张洋中脊地幔动力学经典模型。

  由于北冰洋加克洋中脊海域常年冰封,开展冰下海底地震探测十分困难,成为地球板块边界动力学观测的“最后一块拼图”。为此,李家彪发起了“北冰洋洋中脊国际联合考察计划”,并于2021年带队前往北极加克洋中脊开展中国第12次北极科学考察。

  研究区域覆盖的极厚冰层给仪器安置工作出了难题。幸运的是,研究团队乘坐的“雪龙2”号破冰船凭借其全球首创的船艏和船艉双向破冰技术,成功克服了这一困难。

  破冰船在厚厚的冰层上开辟出一条“水路”,李家彪团队迅速投放了海底地震仪等科学仪器。在破冰船的尾部,他们释放空气枪作为人工地震源,海底地震仪负责接收信号。团队共投放自主研制的海底地震仪43台,成功回收42台,获得大量珍贵的科学探测数据。之后,研究人员对收集到的数据进行了详细分析。

  论文第一作者、自然资源部第二海洋研究所研究员张涛介绍,基于这次海底深部探测和综合调查,研究团队发现了北极超慢速扩张洋中脊极端丰富和变化的岩浆供给特征。“2015年,科学家在西南印度洋中脊也发现了超厚地壳。将这两种现象结合起来,我们突然醒悟,原来这种超厚地壳很可能是常态,是超慢速扩张洋中脊特有的超强变化。”

  提出地幔动力新机制

  超慢速扩张洋中脊是海底扩张和板块运动在地球表面留下的壮观的痕迹之一,它们以极低的速率扩张,形成了独特的地质特征。根据地幔动力学经典理论,洋中脊下的地幔被板块拖曳着向上运动而呈现被动上涌,即被动地幔上涌机制,形成的岩浆量(即地壳厚度)受扩张速率的控制。

  “北冰洋加克洋中脊是典型的超慢速扩张洋中脊,科学家一直预测那里难以形成地壳,地壳厚度可能接近于零。”林间告诉《中国科学报》,最新研究提出了全球洋中脊系统均受主动和被动地幔上涌双机制控制的新理论,改变了学界一直认为的超慢速扩张洋中脊岩浆极度贫瘠的观点。

  论文共同作者、中国科学院南海海洋研究所助理研究员查财财介绍,根据扩张速率的不同,全球洋中脊被分为快速扩张、慢速扩张和超慢速扩张3种类型。传统的被动地幔上涌理论很好地解释了从快速扩张到慢速扩张洋中脊的地壳增生,但在超慢速扩张洋中脊中,理论预测与实际观测存在很大偏差。

  该新发现挑战了传统洋壳增生的经典理论,揭示了超慢速扩张洋中脊局部大规模岩浆活动的普遍性。李家彪团队提出,在占全球洋中脊系统约20%的超慢速扩张洋中脊下,主动地幔上涌机制占据了主导地位。

  《自然》审稿专家对该研究成果给予了高度评价,认为这是首次在北极地区进行大规模的冰下海底地震探测实验。这一突破性的尝试将极大激发人们对洋中脊领域的研究兴趣。研究中发现的地壳厚度变化非常显著,并且测量结果与传统观念存在较大差异。这表明需要采用新的理论模型来解释这些发现。

  “这项工作不仅丰富了地球板块边界动力学的理论,还增进了我们对超慢速扩张洋中脊地幔动力学的理解,具有重要的科学意义。”林间表示,随着研究的不断深入,人们有望更加全面、深入地认识超慢速扩张洋中脊的岩浆活动特征。(朱汉斌 李淑)

[ 责编:谢芸 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 探访京津中关村科技城新貌

  • 江苏泰州:溱湖冬捕年味浓

独家策划

推荐阅读
为揭示东亚古人类的技术智慧与演化脉络提供了关键证据。
2026-01-30 09:37
中国气象局29日发布《2025年中国风能太阳能资源年景公报》。公报显示:2025年,全国风能资源为正常年景,全国太阳能资源总体为偏小年景。
2026-01-30 03:30
想象一下手电筒的光:柔和而四散,照亮着前方。激光,就像一束训练有素的光——所有光粒子步调一致,朝着同一个方向前进,能量高度集中。这种特性让激光能完成普通光做不到的“精细活”,从超市扫码器到医院手术刀,从光纤通信到舞台灯光秀,背后都有它的身影。
2026-01-30 03:30
激光技术被誉为20世纪“四大科技发明”之一。聚焦真空紫外非线性光学晶体材料领域基础研究和关键核心技术,中国科学院新疆理化技术研究所(以下简称“新疆理化所”)潘世烈团队成功研制出氟化硼酸铵(ABF)晶体,首次实现直接倍频真空紫外激光158.9纳米输出,创造了该领域世界最短输出波长纪录。相关成果于29日在国际学术期刊《自然》发表。
2026-01-30 03:30
开慧镇党委书记杨骏介绍,依托科技小院,全镇形成科技养殖示范点5处、示范户24户,带动村民增收1800余万元,并发展起梅花鹿、鹌鹑等特色养殖产业。在博乐市区西南方向四五公里处的荒漠化草原上,科技小院还开辟了200多亩的试验场,将这里作为科研攻关的第一线。
2026-01-30 09:17
科研人员将种子放入冷库储存。例如,千年种子库与中国西南野生生物种质资源库就通过人员交流、技术培训、资源备份、联合研究等,共同推进生物多样性保护。
2026-01-30 09:16
寒冬时节,云南省元江哈尼族彝族傣族自治县龙潭社区番荔枝种植基地里却热火朝天,一颗颗“冬日限定”的番荔枝被采摘、装箱,销往全国各地。
2026-01-30 09:14
“相对拥有百年历史的《科学》,《工程》才走过第一个十年。未来十年,我们要争取与世界顶级刊群比肩。”周济表示,这条路需要时间,以及学术评价观念、出版生态与国际化运营能力的协同推进。
2026-01-29 02:45
工业和信息化部28日公布,2025年,我国通信业实现平稳增长,产业结构持续优化,用户规模实现量质双升,5G、千兆等新型信息基础设施建设加快部署。
2026-01-29 02:55
中国科学院物理研究所近日发布《2025年度REBCO高温超导带材战略研究报告》(以下简称“报告”),这是国际上首份针对高温超导带材发展的系统性战略报告。
2026-01-29 02:55
2025年,山东省实现地区生产总值10.3万亿元,比上年增长5.5%。亮眼的成绩单,离不开创新动能持续发力。齐鲁大地上,科技创新和产业创新融合发展成果正在厚积薄发,新质生产力加速崛起,转型动能持续增强,高水平创新型省份建设的目标正在逐步实现,向着“十五五”征程稳步进发。
2026-01-29 02:45
近期,多家外国科技公司宣布计划将人工智能及数据中心送往太空,引发了科技界的热烈讨论。这一看似在科幻电影中才会发生的场景,已逐步从设想转变为现实。
2026-01-29 02:55
手机厂商将投入更多精力,通过形态变革、差异化外观设计、联名合作等,更好地满足用户的情绪价值需求,激发消费者购买欲望。
2026-01-29 09:02
截至2025年底,全国累计发电装机容量38.9亿千瓦,同比增长16.1%。2025年,风电光伏累计装机历史性超过火电,截至12月底已超出约3亿千瓦。
2026-01-29 09:01
1月27日上午,中国科学院大学星际航行学院揭牌仪式在中国科学院与“两弹一星”纪念馆举行,标志着该学院正式成立。从“东方红一号”划破天际到“祝融号”漫步火星,中国人的航天梦从未停止。
2026-01-28 02:45
2025年,我国区域科技创新布局更加优化,三大国际科技创新中心建设进入新阶段,区域科技创新中心建设取得新成效。
2026-01-28 02:45
打破产业间的壁垒,鼓励跨领域、跨行业的融合探索,推动资源要素的自由流动与高效配置,不仅能盘活存量资源、激发增量活力,更能催生具有引领性的新产业、新模式、新动能。
2026-01-28 02:45
合肥是儿童文学作家许诺晨的家乡。合肥科学岛,是她所拥有的一座得天独厚的科学和科幻题材的“硬核基地”,由她来写量子少年这个题材,可谓“近水楼台”。《量子女孩》(中国少年儿童新闻出版总社2025年12月出版)是她献给“量子新城”合肥的一部“家乡书”。
2026-01-28 02:55
北京火箭大街展示与运控中心作为商业航天测运控中心、商业航天公共服务平台的空间载体,将为企业提供卫星运控服务和交流推介平台。
2026-01-28 09:15
水稻耐不耐旱,和叶子的厚实程度相关,这是由什么因素决定的?日前,中国农业科学院作物科学研究所水稻分子设计技术与应用创新团队发现,水稻基因组中的三个耐旱基因可以“团队作战”,
2026-01-27 02:50
加载更多