点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:顶端弯钩乃植物破土而出关键 科学家破解其形成机制
首页> 科技频道> 综合新闻 > 正文

顶端弯钩乃植物破土而出关键 科学家破解其形成机制

来源:科技日报2022-01-19 09:34

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  春天,种子发出的嫩芽能够以柔克刚破土而出,让不少人惊叹生命的力量。研究发现,嫩芽顶端的弯钩是其成功出土的关键所在。然而,顶端弯钩的形成机制却困扰了科学家100多年。

  “《科学-进展》近日报道了我们关于植物顶端弯钩形成机制的研究成果,我们成功揭示了植物嫩芽顶端弯钩的发育形成机制,系统解答了这一悬而未决的问题。”1月18日,中国科学院遗传与发育生物学研究所研究员李传友告诉科技日报记者。

  顶端弯钩的形成本质上是生长素对细胞生长的差异控制

  埋在土里的种子发芽后,要想成功破土而出。一方面,需要幼苗的下胚轴通过快速向上生长,获得破土而出的动力;另一方面,需要下胚轴的顶端形成一个称为“顶端弯钩”的结构,将脆弱的子叶和顶端分生组织弯向下生长。

  “这种弯曲的结构,既能保证幼苗拥有一个相对坚硬的‘钻头’冲破土壤,又能避免子叶和顶端分生组织在出土过程中与土壤直接冲撞而造成机械损伤。”李传友说,对于绝大多数双子叶植物而言,顶端弯钩的形成是成功出土的关键所在。

  早在1881年,达尔文父子就曾对顶端弯钩的形成进行了初步探讨。“之后的140年里,尽管顶端弯钩吸引了无数植物生物学家的研究兴趣,但其具体的发育形成机制一直是植物生物学领域的未解之谜。”李传友强调。

  事实上,顶端弯钩是由于下胚轴顶端两侧的细胞差异性生长导致的。生长素的不对称分布是导致这种差异性细胞生长的原因:弯钩内侧高浓度的生长素抑制细胞生长,从而导致内侧细胞生长慢而外侧细胞生长快,使得下胚轴向内弯曲。

  因此,“本质上来讲,顶端弯钩的形成是生长素对植物细胞生长的差异性调控问题。”李传友说。

  作为一种生长类调节激素,生长素最重要的作用之一是调节植物细胞的生长/大小。生长素对植物细胞大小的调节具有严格的组织和浓度依赖性。李传友介绍,一般来说,高浓度生长素抑制细胞生长,而低浓度生长素促进生长。在生理浓度范围内,生长素在地下部分抑制细胞生长,而在地上部分促进细胞生长,这也是植物的不同器官具有不同重力反应的生理基础。

  有趣的是,生长素在下胚轴中促进细胞生长的同时,在顶端弯钩内侧却抑制了细胞生长。它是怎样做到在如此近的部位发挥完全相反的作用呢?

  重力是触发幼苗顶端弯钩形成的起始信号

  研究人员发现,在幼苗发育的早期,下胚轴中高浓度的生长素抑制细胞生长;之后,随着下胚轴细胞的快速生长和体积变大,高浓度的生长素逐渐被稀释到一个相对较低的浓度,转而促进细胞生长。

  “这种生长素导致的由抑制转为促进的生长调控使得下胚轴经历了两个不同的生长阶段,即早期速度慢而晚期速度快。早期的慢速生长恰好为顶端弯钩的形成提供了一个发育窗口。”李传友说,后续研究表明,重力是触发幼苗顶端弯钩形成的起始信号。

  李传友进一步解释道,在生长素抑制细胞生长的早期慢速生长阶段,重力诱导高浓度生长素在下胚轴的下侧积累,导致该侧细胞的生长抑制得以加强,而另一侧的生长抑制得以缓解。因此,此时的下胚轴像根一样具有正重力反应而向下弯曲生长,进而启动弯钩的形成。

  同时,随着下胚轴细胞由基向顶的快速生长,底部细胞先于顶端细胞生长变大,使得这些细胞内的生长素浓度也先于顶端细胞被稀释到一个相对较低的浓度。这种生长素浓度的降低导致其对细胞生长的调控作用由抑制转变为促进。相应地,下胚轴底部的重力反应也由正变负转而向上直立生长。而顶端细胞因仍具有较高的生长素浓度而保持正重力反应向下弯曲。

  “随着越来越多的下胚轴细胞由基向顶地转入直立向上的生长阶段,顶端弯钩获得快速向上的动力,最终帮助幼苗破土而出。”李传友说。

  此外,研究人员还揭示了顶端弯钩内侧高浓度生长素抑制细胞生长的分子机制。

  对此,李传友表示,这项研究不但揭示了双子叶植物顶端弯钩的形成机制,还提出了一个高浓度生长素抑制细胞生长的分子框架。这些发现极大地扩宽和更新了人们对于植物细胞的生长调控这一基本问题的认知。(记者 陆成宽)

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 游西夏陵 开启新体验

  • 江苏扬州至镇江直流输电二期工程建成投运

独家策划

推荐阅读
近日,一个名为Moltbook的社交平台突然走红。与普通网络平台不同的是,Moltbook上的用户都是AI智能体。
2026-02-14 09:21
全球规模最大的200万吨/年柴油吸附分离装置目前在中国石油广西石化稳定运行。
2026-02-14 09:16
大连理工大学赵珺教授带领师生团队正抓紧时间,为实现可重复使用运载火箭关键部件的“复用检测”技术突破全力冲刺。
2026-02-14 09:12
一场刷新人类对宇宙极端物理过程认知的高能事件,被中国科学卫星清晰捕获并成功解读。
2026-02-14 09:11
近日,中国计量科学研究院研制的锶原子光晶格钟NIM-Sr1正式获准校准国际标准时间,实现了我国光钟参与校准国际标准时间“零”的突破。
2026-02-14 09:10
装上智能仿生手,截肢患者可以轻松拿起水杯喝水;高位截瘫患者用意念移动电脑光标,操控轮椅,指挥机器狗取外卖……
2026-02-13 09:50
凌晨2时,南昌西动车组运用一所检修库内灯光如昼。“接触网已断电,安全措施准备完毕,申请登顶!”确认许可后,国铁南昌局电务段南昌西车载设备车间工长曹准与工友一前一后登上动车组车顶,对北斗天线进行全面“体检”。
2026-02-13 09:45
近日,广西涠洲岛海域发生渔船撞击布氏鲸事件,鲸鱼受伤的画面令人揪心。虽然撞鲸的并非观鲸船,但这起事件也给正处于旺季的观鲸游敲响警钟——负责任地观鲸,有边界地亲近,人与自然和谐共生图景才能真正长久。
2026-02-13 09:43
核光钟通过真空紫外激光诱导原子核跃迁,具备更高精度与强抗干扰能力,且可实现便携化应用。但研制核光钟的道路上的一个核心瓶颈,是无法研制出能激发核跃迁的连续波激光光源。
2026-02-13 09:42
2021年,王勤团队开始研发低成本、适用于牧场环境的马匹体形自动测定设备。王勤团队搜集了全球90个马群体、近40个品种的基因组信息,构建了包含2000多个个体的参考面板——这是目前全球规模最大的马基因组参考数据库。
2026-02-13 09:36
一纸锦旗山水间,杏林春暖绿意长。
2026-02-12 11:01
金星与地球大小相近,同样诞生于太阳系内侧,却有着截然不同的命运。
2026-02-12 09:41
科技部十司相关负责同志解读《调查处理规定》。
2026-02-12 09:38
《细胞》封面:猕猴屏状核细胞分类与全脑联接图谱。在当前脑图谱大科学计划研究目标迈进绘制非人灵长类介观脑图谱的关键阶段,中国科学家仍在进一步集聚全球力量,持续扩大“朋友圈”。
2026-02-12 09:25
据悉,在战略上,植物星球计划还将整体提升全球生物多样性保护和实现碳中和的生态能力,构建植物科学领域全球大科学命题国际合作的新格局。
2026-02-12 09:17
马年将至,作为一种兼具力量与速度的动物,马正受到格外的关注。
2026-02-12 09:12
工业和信息化部等五部门近日印发《关于加强信息通信业能力建设支撑低空基础设施发展的实施意见》。加强监管能力体系建设,规划无人机专用号段,推动“一机一码一号”能力建设,探索标识解析在无人机领域的应用,形成无人机通信资源精细化管理。
2026-02-11 09:25
全球森林逐渐被快生树木主导,而稳定生态系统的慢生树种正在消失。“我们关注的是极为独特的物种,它们主要集中在生物多样性丰富、生态系统联系紧密的热带和亚热带地区。“此外,在现在和未来受到干扰的地区,非本地物种可能会加剧对光、水和养分的竞争,从而使本地树木更难生存。
2026-02-11 09:32
中国科学院动物研究所研究员王红梅带领的“灵长类胚胎发育的规律解析与体外模拟团队”,用27年的接力攻坚,把灵长类早期胚胎发育这个看不见、摸不着的“黑匣子”,变成了清晰可见的“生命剧本”。
2026-02-11 09:32
截至1月28日,“横竖都是世界第一”的贵州花江峡谷大桥累计接待游客突破130万人次,通行车辆超20万辆次,持续为区域发展注入新动能。大桥带来的发展溢出效应令人瞩目,而深入大桥肌理探查,你会发现,支撑起这座庞然大物的每根细钢丝,全部都是“中国造”。
2026-02-11 09:31
加载更多