点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:遇强则强 柔性抗冲击材料如何实现“智能应变”?
首页> 科技频道> 综合新闻 > 正文

遇强则强 柔性抗冲击材料如何实现“智能应变”?

来源:光明网2023-05-26 09:17

  想象一下,你正在进行极限运动,例如滑雪、攀岩或者 BMX 骑行,除了运动和自然美景带来的刺激,你还得面对身体上的疲劳和不小心撞击带来的伤害。如果有一类材料可以帮你大大降低身体受到的冲击力,减少你遭受疼痛和受伤的几率,你是否会感到兴奋呢?这类材料已经存在,被称作为柔性智能抗冲击材料。

  “中国科学院力学研究所团队创新性提出柔性智能抗冲击材料因子这一概念,英文名叫Flexible Intelligent Anti-impact Material factor,简称FIAM因子,是一类在介观-微观尺度具备应变率增强特征,并可以通过微结构、分子和原子等不同层面与传统工程材料结合,在不改变材料初始性状的条件下,提升对外部冲击载荷的智能响应能力的功能性单位。那添加了FIAM因子的材料,我们就统称为柔性智能抗冲击材料,所以它不是特指一种材料,而是一系列材料的组合。”中国科学院力学研究所博导、正高级工程师魏延鹏在日前举行的柔性智能抗冲击防护技术媒体沙龙上介绍说。

遇强则强 柔性抗冲击材料如何实现“智能应变”?

中国科学院力学研究所博导、正高级工程师魏延鹏介绍柔性智能抗冲击材料

  日常生活中,有一类流体,对其施加冲击力的时候,会出现较强的抵抗力,甚至会呈现出固体的性质,而当冲击力消失的时候,又恢复成流体,体现出典型的“遇强则强、遇弱则弱”的特性,这类材料被称为“剪切增稠液体”,比如淀粉糊。2018年6月,魏延鹏团队研究发现,剪切增稠液体对冲击及其后续的振动具有神奇的智能效应,具备物理滤波器的作用,能对在高速冲击下的物体或结构起到很好的保护作用。

  “这里的智能是指针对不同的冲击,材料的响应是不同的。有点类似于滤波器,需要的频带保留,不需要的频带全部滤掉。从本质上来说,这中间发生的是一种物理的变化,也就是剪切增稠液体在承受压力的时候,材料中细微的二氧化硅颗粒会形成‘抱团取暖’的效应,从而提供比较强的抵抗力。”魏延鹏解释说。

  此外,生活中还有一类在承受冲击时会发生化学变化的材料,被称作“剪切增稠胶材料”,有点类似橡皮泥材料,在自然状态下非常柔软,而在承受冲击情况下,能释放出非常强大的抵抗力,而且冲击力越大,抵抗力越强。2021年11月,魏延鹏团队通过刚柔并济的设计原理,首次提出将剪切增稠胶作为防弹衣的缓冲层,可以有效降低子弹冲击对诸如心脏等人体器官的伤害。

  通过多年的研究积累,魏延鹏团队发现,能够起到剪切增稠效果的材料有很多,而发挥作用的关键因素有的在颗粒层面,有的在分子层面,有的则在原子层面。基于此,魏延鹏团队提出用FIAM来定义这一类具有智能抗冲击效果的材料。

  “虽然这些材料拥有非常优异的抗冲击性能,但是它们自身特性却十分不稳定,很容易发生沉淀和变质,所以无法直接应用到工程材料中。”魏延鹏说。

遇强则强 柔性抗冲击材料如何实现“智能应变”?

凝胶型FIAM因子

  为了突破这一瓶颈,魏延鹏团队经过研究,提出了FIAM因子定向赋能工艺,也就是将这些材料中具备的智能抗冲击响应的因子提取出来,然后再根据不同的冲击环境,比如子弹冲击、人体跌倒、屏幕冲击等,进行反向设计,将FIAM因子注入到传统材料中,从而形成兼具可靠性和抗冲击性能的新型防护材料。

遇强则强 柔性抗冲击材料如何实现“智能应变”?

FIAM因子与各类工程材料进行复合形成的新型柔性智能抗冲击材料

  据悉,FIAM柔性智能抗冲击技术目前在柔性屏幕冲击防护、动力电池灌封防护、老年擦倒防护产品、运动瑜伽产品等已经实现了技术转化和产品落地。

  “我们现在已经建立了一个FIAM因子库,有30多种,种类很多,有固体的,液体的,凝胶的,可以选出不同的FIAM因子跟现有的工程材料进行复合,从而形成最适合某个应用场景的抗冲击材料,而且我们已经在怀柔科学城建立了一个年产 30吨的中试生产能力的生产线。”魏延鹏表示,接下来将聚焦柔性智能抗冲击防护技术更深层次的机理研究。(肖春芳)

 

[ 责编:涂子怡 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 2025年中国国际海事会展在沪开幕

  • 山东部分地区迎降雪

独家策划

推荐阅读
布局“未来产业”,“十五五”规划建议为什么“点名”量子科技、生物制造等6项产业?如何挖掘中国未来产业的应用价值?
2025-12-03 09:52
记者从工业和信息化部获悉:截至10月末,我国5G基站总数达475.8万个,比上年末净增50.7万个,占移动基站总数的37%。
2025-12-03 09:44
利用美国宇航局“毅力”号火星车捕捉到的声音和电信号,法国科学家提出了火星存在闪电的证据。
2025-12-03 09:41
11月30日,内蒙古自治区乌海市,我国装机规模最大的半固态锂电池电网侧独立新型储能项目成功并网。
2025-12-03 09:34
近日,由中国科学院院士、中国科学院青藏高原研究所研究员丁林领衔的大陆碰撞与高原隆升团队,系统梳理了青藏高原隆升的历史细节。
2025-12-03 09:28
建设教育强国,基点在基础教育。 特别值得一提的是,我校教师创新性地构建了以跨学科项目学习为核心、贯通小初高认知发展,融合科学家精神、工程师思维与设计师视角的科学教育“PRIDE项目式课堂”模式。 此外,科学教育联合培养共同体,也是学校科技教育的有力支撑。
2025-12-02 10:09
今年12月2日是第十四个全国交通安全日,相关部门将围绕“文明交通 礼行天下”主题开展一系列活动。”  公安交管部门提醒:重载车辆、新手驾驶人等慢速群体尽量使用右侧车道通行,减少因较大速度差导致交通拥堵或事故。
2025-12-02 10:08
作为国内单机容量最大、效率最高燃气机组,与传统燃煤机组相比,应急调峰能力大幅提升,能源利用更高效。其碳排放强度仅为百万千瓦燃煤机组的40%,且几乎不产生颗粒物和二氧化硫,从源头减少污染。
2025-12-02 10:08
近日,法国空中客车公司与欧盟航空安全局相继发布声明,要求全球约6000架空客A320系列飞机紧急停飞维修。“此次事件的核心原因是受到单粒子翻转的影响,同时也暴露出航空电子设备对高空飞行环境中太阳辐射影响应对不足。
2025-12-02 10:07
转录组测序显示,受体植物中茉莉酸信号通路被激活;高效液相色谱-质谱检测证实,受体植物根系中茉莉酸及活性衍生物JA-Ile含量增加。”  该团队发现,茉莉酸甲酯处理能模拟菌根网络介导的互作效应,激活植物茉莉酸通路,改变根际微生物组,富集有益菌。
2025-12-02 10:06
中国科学技术大学教授潘建伟、朱晓波、彭承志、龚明等与山西大学教授梅锋等合作,基于可编程超导量子处理器“祖冲之二号”,首次在量子体系中实现并探测了高阶非平衡拓扑相。
2025-12-01 09:33
在距离海平面千米的深海,阳光无法抵达,海水冰冷,压力极大。然而,在环境极端的“海底沙漠”中,却生长着形态各异、结构复杂的深海珊瑚,构建起生机勃勃的海底“秘密花园”。
2025-12-01 09:32
推动科技创新和产业创新深度融合,是加快发展新质生产力、建设现代化产业体系的内在要求,也是塑造高质量发展新动能新优势的战略抉择。
2025-12-01 09:23
红小豆又名赤豆、小豆,是中国老百姓餐桌上一种颇受欢迎的杂粮,但科学家对其基因组的了解还不够深入。
2025-12-01 09:23
在“梦想”号问世之前,中国科学家想要开展深海大洋钻探研究,只能“借船出海”。
2025-12-01 09:22
11月28日晚,2025中国・E-TOWN电竞节超级冠军杯开幕式在位于北京经济技术开发区(又称“北京亦庄”)的北京智慧电竞赛事中心举行。
2025-11-28 20:51
加强重点液态食品道路散装运输监管,守护“舌尖上的安全”;督促连锁餐饮企业落实食品安全主体责任,规范一些连锁餐饮企业“只开店、不管店”问题;“旧国标”电动自行车全面停售……12月新规,一起来看!
2025-11-28 17:11
从神舟二十号乘组换乘返航的刷屏热搜,到“太空烧烤”的温情热议;再到“十五五”期间中国计划发射4颗科学卫星任务……近期中国航天事业的新进展层出不穷。
2025-11-28 09:15
人工智能是引领新一轮科技革命和产业变革的战略性技术,其标准化建设直接关系到关键核心技术自主可控、智能成果普惠于民以及在全球科技治理中赢得话语权。
2025-11-28 05:00
在黑龙江省齐齐哈尔市甘南县东阳镇隆胜村树莓园,凛冽寒风中,东北农业大学园艺园林学院教授霍俊伟正蹲在田埂上仔细查看果树修剪情况。
2025-11-28 05:00
加载更多