点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:蛋白也能形成“结界”?探索微生物细胞不对称性分裂的调控机制
首页> 科技频道> 综合新闻 > 正文

蛋白也能形成“结界”?探索微生物细胞不对称性分裂的调控机制

来源:科技日报2022-11-29 16:00

  刁雯蕙 科技日报记者 刘传书

  世界上没有完全相同的两片树叶。在微观世界中,细菌同样存在着“生成”不同子代细胞的现象。细胞不对称性分裂(也叫极性分裂)是发生细胞分化和产生生物多样性的基础,也是引起细菌异质性耐药的重要原因。然而,细菌是如何调控生成差异化的子细胞,长期以来并不清楚。

  近日,记者从中国科学院深圳先进技术研究院获悉,该院合成生物学研究所赵国屏院士组内的赵维团队最新研究发现,微生物中的极性蛋白通过生物物理作用形成具有生理功能的无膜区域,有助于建立和调控细菌细胞的不对称性,相关成果于11月24日发表在《自然·通讯》上。

  细胞中的“命运决定因子”

  细胞极性是细胞维持自我更新、产生生物多样性的基本方式,在细胞生长、增殖、分化、发育和行使细胞功能等多个方面发挥着重要作用。这种方式广泛存在于动植物和微生物的大部分细胞中,其基本特征在于母细胞在分裂前发生细胞极化,将细胞命运决定蛋白不对称分布在细胞的新、旧两极,最终细胞不对称分裂为两个不同命运的子细胞。典型的细胞命运决定蛋白是成对存在的磷酸化信号因子。然而,“决定”细胞命运决定蛋白不对称性分布的机制是怎样,一直是科学家们致力于寻找的答案。

  由于细胞分裂过程调控网络的高度复杂性,赵国屏-赵维团队将目光聚焦在细胞分裂更加精炼的细菌上,而新月柄杆菌作为细胞发育的模式微生物已有多年的研究历史。目前已发现一些定位于细胞极的“脚手架蛋白”可以起到招募细胞命运决定蛋白,进而影响细胞极性生长的作用。

  部分实验室成员。科研团队供图

  “我们对脚手架蛋白潜在地调控细胞命运,决定蛋白不对称性分布的机制进行了深入探索。脚手架蛋白广泛存在于细胞中,通常能自己组装形成大分子复合物,可以将目标蛋白招募到特定的细胞区域,在细胞信号转导、细胞分裂、形态发生等生物过程的空间调节中发挥作用。我们推测脚手架蛋白可能在细胞极性调控中起关键作用。”赵维说。

  脚手架蛋白“结界”形成极性堡垒

  受益于高分辨率成像技术和蛋白分子标记示踪技术的高速发展,科研团队在新月柄杆菌中发现一个关键脚手架蛋白PodJ特异性地聚集在细胞新极。进一步研究发现,PodJ蛋白在细胞新极的组织过程中起着“领导”作用:PodJ通过自发组装在细胞新极形成近微米级的极性堡垒,这个极性堡垒可以特异性地捕获一众“粉丝”,中间就包括新极细胞命运决定蛋白PleC等。

  那么,PodJ蛋白是如何修建自己的“极性堡垒”呢?科研团队利用体内延时摄影、蛋白异源表达,以及光漂白恢复等实验证明:PodJ蛋白实际上是通过物理学概念上的“相分离”作用实现细胞内无膜区隔化的。通过对其蛋白结构域的分析发现,PodJ含有能够形成自发组装的卷曲螺旋以及大片段的无序结构。“所以,细菌细胞通过脚手架蛋白筑起了一层‘结界’,这个结界内有不同于外面的蛋白组成、浓度以及相互作用,介导了近立方微米范围内的信号传导、组织,最终导致了不同子代细胞的生成。”赵维解释说。

  微生物细胞内的蛋白“结界”。科研团队供图

  团队选择了一个非极性分裂的微生物——大肠杆菌,作为异源表达平台来进一步测试PodJ蛋白要如何“领导”及“捕获”所需的蛋白种类。通过体内外实验证实,PodJ蛋白可以通过与相分离相关的两个结构域介导捕获多种不同的信号蛋白到“结界”中来。科研团队由此推测,PodJ的多功能募集能力可能来自微生物无膜区隔化,而不是传统的蛋白-蛋白相互作用。

  进一步,研究团队提出了一种新的微生物细胞极性调控机制,该机制涉及细菌细胞新极组装和新旧细胞极重塑。“微生物细胞区隔化”可能作为组装脚手架蛋白复合物和调节不对称细胞分裂的通用生物物理方法,类似的方法可用于人工细胞器和其他无膜生物催化室的工程化应用。

  未来,研究团队将进一步利用交叉利用计算生物学和生物物理学知识,探索多个不同脚手架蛋白之间的相互作用关系,人工设计以及构建可控的细胞区隔化,应用于从头构建无膜细胞器和单细胞生命。

[ 责编:肖春芳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 习近平同巴基斯坦总统扎尔达里会谈

  • 习近平同吉尔吉斯斯坦总统扎帕罗夫会谈

独家策划

推荐阅读
构建“教育-认证-就业-成长”的全链条生态,让每个飞手都能找到属于自己的“升空航道”。
2025-02-06 14:23
松下的重组绝非简单的业务收缩,而是日本制造业在数字经济时代的一次战略校准。
2025-02-06 13:20
西湖大学未来产业研究中心、工学院王睿团队在钙钛矿/铜铟镓硒叠层太阳电池领域取得重要成果。
2025-02-06 09:20
不能否认,关键核心技术“卡脖子”问题仍未解决,笔者在调研中也发现,解决“卡脖子”问题,需要把握好几个关系。
2025-02-06 09:23
我们知道,光速是人类已知的速度极限。1秒时间里,光可以穿越30万千米,相当于绕地球赤道7圈半;而在1阿秒内,光只能传播0.3纳米的距离,大概相当于一两个硅原子的长度。
2025-02-06 09:22
借助高时间分辨率的观测数据,研究团队确认了合声波的局部生成是由电子运动引起的,并量化了波与电子之间的能量转移速率。”  谈及未来的研究计划,刘成明说:“团队将继续深入探索合声波背后的非线性机制,特别是其普遍性和作用条件。
2025-02-06 09:49
加拿大Xanadu量子技术公司开发出全球首台可扩展光量子计算机原型。研究人员指出,数千个这样的单元可以通过光纤电缆连接,从而创建具有巨大处理能力的大型量子计算机。为了验证这一理念,研究人员构建了一个由四个服务器机架组成的原型系统。
2025-02-06 09:35
毋庸讳言,当下中国科技产业正面临双重压力:一边是西方技术封锁不断加码,另一边是AI、量子计算等新赛道竞争白热化。而今,创新的火炬已经点燃,当点点星火汇聚成璀璨星河,声声号角激荡起创新浪潮,当信心之帆迎风鼓满,东方大国必将驶向科技强国的星辰大海。
2025-02-06 09:29
近日,农业农村部成都沼气科学研究所厌氧微生物创新团队与日本科学家合作发现了一种合作共赢的菌群互作模式。
2025-02-05 09:23
春节期间,全国科技馆以“科技温暖中国年”为主题,为公众献上一系列融知识性、趣味性与人文关怀于一体的科普惠民活动。
2025-02-05 09:22
太阳暗条是悬浮于日冕中的低温等离子体结构,其突然爆发可能引发日冕物质抛射,导致地球磁暴和卫星通信故障。该团队据此建立的灾变临界条件模型,可将暗条爆发预警时间提前至现有水平的2至3倍。
2025-02-05 09:48
中国海油近日对外宣布,我国首个自营超深水大气田“深海一号”累计生产天然气超100亿立方米,生产凝析油超100万立方米,其中2024年天然气产量超32亿立方米,连续3年产量在30亿立方米以上,持续保持高产稳产运行状态。
2025-02-05 09:48
4日,记者从中国科学技术大学获悉,该校郭光灿院士团队李传锋教授、许金时教授和数学科学学院马杰教授等,联合国内研究团队,开发了适合研究单体高维量子系统的可扩展光学体系,成功观测到最强的逻辑形式量子关联。
2025-02-05 09:46
我国针对数据标注产业发布系统性指导文件,是我国为护航人工智能产业、提升新质生产力水平作出的重要布局。
2025-02-05 09:24
近期,我国“天关”卫星(爱因斯坦探针卫星)观测到一例伽马暴EP240315a,这是首次探测到宇宙早期爆发现象的软X射线信号,将为开展早期宇宙相关研究开启一扇新窗口。1月23日,相关成果论文在国际学术期刊《自然·天文》在线发表。
2025-01-27 09:44
日前,由机器人天工、天轶、小柒与现场主持人共同发布的,以“畅享科技 乐酷亦庄”为主题的北京经济技术开发区2025年文商旅体发布活动,在北京智慧融媒创新中心举办。
2025-01-27 09:35
近年来,我国种业快步发展。从种子生产到App订单运输、催芽厂催芽作业、智能秧棚育秧、轨道车运输、智能驾驶插秧、田间水肥管理、App订单驾驶收获,我国已经形成科技范十足的种子生产链条,跑出独具中国特色的农业科技创新“加速度”。
2025-01-27 09:34
乙巳蛇年将至,国家自然博物馆“灵蛇献瑞——2025乙巳蛇年生肖文物大联展”和升级焕新的基本陈列“脊椎动物的崛起”向公众开放,不少大朋友和小朋友在浓浓的年味中迎来一场科普之旅。
2025-01-27 09:34
车辆扎进山体,穿过17.5公里长的锦屏山隧道后,周遭终于从昏暗变得明亮,一座“地下城”出现在眼前——这里是中国锦屏地下实验室(以下简称“锦屏地下实验室”)二期。
2025-01-27 09:27
快过年了,当很多人渐渐放下手头工作时,团队河南安阳育种站负责人阎俊研究员和往常一样出门了,目的地依然是他熟悉的育种田。
2025-01-26 09:19
加载更多