点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:生物制造让建筑更有“生命力”
首页> 科技频道> 综合新闻 > 正文

生物制造让建筑更有“生命力”

来源:科技日报2023-09-12 09:38

  近年来,3D打印、绿色屋顶、太阳能电池板、地热供暖和制冷系统,以及可持续材料的使用,大大减少了建筑对环境的负面影响,提高了能源利用效率。而生物制造,则有望成为可持续建筑技术领域的“后起之秀”。

  生物制造涉及利用经过基因改造的微生物生产拥有先进性能的产品。与建筑技术中使用的传统方法相比,这种创新工艺可以带来更可持续的建材,更有效地维护建筑安全。美国《福布斯》网站在8日的报道中,向人们介绍了生物制造技术的新风潮,这种技术有望赋予建筑物更持久的“生命力”。

  混凝土能自我修复

  大部分建筑物是由钢筋混凝土建造而成。混凝土是一种复合材料,由细骨料和粗骨料与随时间硬化(固化)的水泥浆黏合在一起形成。随着时间的推移,混凝土会变得容易破裂,这不仅影响其美观,还会危及其强度。而混凝土也是有寿命的,日积月累,混凝土内部会产生复杂的应力作用,撕裂其内部结构,产生裂缝。

  材料科学最近取得了一些进展,有望带来能自行修复的混凝土,对建筑行业来说,这不啻为一个“福音”。在自修复混凝土中,微生物受到营养物质的刺激,会促进自身的生长和代谢活动。这些生物体产生的酶催化反应,最终会形成能愈合裂缝的物质。

  例如,荷兰代尔夫特理工大学教授亨德里克·容克斯发现了一种杆菌——芽孢杆菌。这种杆菌可以在石灰石内生存,也就是说具备生活在混凝土中的能力,并且可以产生孢子。孢子在缺水状态下休眠,一旦混凝土出现了裂缝,接触到空气和水,孢子就会激活,随即开始生长,生成大量的菌丝进行裂缝填补。这种生物混凝土能在大约3周时间内愈合最多0.5毫米宽的裂缝,大大延长了建筑物的使用寿命。

  目前这项技术已经研发出3种产品:自愈混凝土、修补水泥砂浆和修复液。这项技术可以用于建造军用和民用机场的跑道,这些跑道会随着时间的推移而磨损。

  美国伍斯特理工学院的研究人员则在红细胞中发现了一种酶,该酶与二氧化碳反应可以产生碳酸钙晶体,让混凝土自我修复。在他们的实验中,经过一天之后,3毫米的裂缝和1.5毫米的小洞都复原如初。

  研究指出,未来如果这种微生物修复技术能够成功应用于桥梁、隧道和道路建设等工程领域,每年有望节省数十亿美元的维修费用。而且这种自修复生物材料对混凝土结构修复而言,也具有划时代的意义。

  硅藻可用于水泥制造

  水泥广泛应用于各种建筑内。当干燥的成分与水反应时,水泥就会变成黏合剂,保护硬化材料免受化学侵蚀。但水泥行业也是二氧化碳排放大户,水泥制造商通过碳捕获和封存技术来减少二氧化碳排放,提高能源效率和建筑寿命。

  生物制造可用于为水泥开发添加剂。例如,将硅藻用于建筑中,以增强水泥的力学和流变特性。硅藻是最早在地球上出现的一种单细胞藻类生物,生存在海水或湖水中,形体极为微小,常常以惊人的速度生长繁殖。硅藻具有多孔二氧化硅细胞壁,可用于水泥内以提高材料的强度。

  此外,科学家还可以对硅藻进行基因改造,创造出其他有价值的产品。不过,生物制造技术在将硅藻用于水泥产业时,还需要克服成本问题。

  利用生物为建筑“把脉”

  结构健康监测技术是近年来新兴的一种对建筑物或构筑物进行常规“体检”和“健康”监测的重要手段,主要方法就是利用智能传感仪器,例如应变传感器、裂纹检测器、振动和测压计等,对建筑物或构筑物结构进行实时监测、动态管理和趋势研判。

  微生物可以动态地感知和响应不同的环境条件,科学家指出,对生物进行基因改造,可以让其“变身”为生物传感器,报告建筑物的特定情况。这为结构健康监测提供了新思路。

  美国特拉华大学在混凝土内发现了一些细菌,包括弓形杆菌属、杂色纯洁杆菌、嗜碱盐水球菌等,这些细菌似乎都跟降解反应有关。研究团队指出,假设能够监测诸如建筑物和桥梁等混凝土结构中的这些细菌,那么有朝一日可能会将其用作倒塌风险的早期预警系统。

  此外,借助生物制造技术,还可以定制微生物,利用合成生物学精确调整建筑工程的材料等。不过,目前将合成微生物引入建筑工地还面临技术挑战。(记者 刘 霞)

[ 责编:张佳兴 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 海南自由贸易港正式启动全岛封关

  • 在杭州,路过“树”的浪漫

独家策划

推荐阅读
中国科学技术大学教授潘建伟、张强等组成的研究团队与济南量子技术研究院、中国科学院半导体研究所等单位合作,通过混合集成分布式反馈激光器与薄膜铌酸锂光子芯片,成功实现了电泵浦片上集成的高亮度偏振量子纠缠光源,向集成化量子信息处理迈出重要一步。
2025-12-18 10:02
肺鱼,一种可以“绝境求生”的神奇生物,部分种类能在缺水时躲入泥中使用肺呼吸,直到雨季才复苏。借助高精度CT扫描与三维重建技术,乔妥、崔心东与团队其他成员对云南古嵴鱼展开了细致的关键形态特征观察。
2025-12-18 10:00
气温下降容易影响呼吸系统和循环系统。
2025-12-18 09:59
在这些应用成果中,人工智能大模型赋予机器人“大脑”,具身智能赋予机器人“小脑”与“四肢”,让它们学会像人一样思考和行动。蒸汽机延伸了人类的体能,计算机延伸了人类的智能,具身智能意味着一个“人机共生”的新纪元——机器人不再是冷冰冰的机器,而是生产生活中的得力伙伴。
2025-12-18 09:50
其中,“泛在操作系统”“高性能制造”“深部固体资源流态化开采”“超级微创手术”4项体系化新名词,均为我国科学家率先提出。超级微创手术经由自然腔道、隧道、穿刺通道、多腔隙通道,构建起覆盖全器官系统的技术体系。
2025-12-18 09:49
当晨曦穿透亚马孙雨林的薄雾,一组由废旧手机改装的声学传感器正竖起“耳朵”,人工智能(AI)模型在毫秒间分辨出三公里外链锯切割树干的异常声响。这一由AI编织的生态防护网络,正以超越人类感知的速度与精度,重构全球生态环境保护的技术版图。
2025-12-18 09:46
近期,一款名为重力眼罩的产品在各大电商平台迅速走红,成为众多消费者追捧的“助眠神器”。在首都医科大学附属北京世纪坛医院眼科主任医师解晓斌看来,商家宣传的“精准按压穴位”大多是营销话术,重力眼罩的助眠原理并非穴位按压。
2025-12-17 09:45
我1999年从海外回国,26年来,有两个梦日夜萦绕在脑海:一是作为一名物理学者征服世界级难题的“量子梦”,二是作为高等教育工作者为祖国培养一流人才、抢占科技高地的“强国梦”。
2025-12-17 09:40
2022年,我全职加入清华大学,建立求真书院,立志在中国本土培养更多数学人才。 展望“十五五”,国际形势风云激荡,我们要以高瞻远瞩的战略定力,在中国本土培育一批有能力、有魄力、敢于挑战前沿的年轻领军学者。
2025-12-17 09:39
《2022版中国科普期刊概览与目录》为科普成果认定提供了统一标尺。
2025-12-17 09:43
“不断地优化和发展新的专业结构,这是高校本身要做的。”北京林业大学校长李召虎表示,在高等教育不断发展的进程中,满足并引领社会发展是核心逻辑。
2025-12-17 09:23
题:抗流感、重养生,巧用中医方法安度寒冬 齐文升说,此时应尽量早睡晚起;饮食应减少生冷寒凉之物,适当食用牛羊肉、桂圆、核桃等温补食材,怕上火可适当添加银耳、百合或山药。
2025-12-17 09:46
长途出行,电动汽车、充电桩随处可见;冬天取暖,不再以烧煤为主,而转为电采暖……今天,我们身边用能电气化的场景愈发常见。
2025-12-16 10:13
记者从2026中国信通院深度观察报告会上获悉:“十四五”时期,我国6G发展处于愿景需求定义清晰、技术突破初见成效、标准研究全面启动的关键阶段。
2025-12-16 10:06
相较西方国家而言,中国现代科研体系起步较晚,直至改革开放后才重建硕博制度,科研力量逐步壮大。(作者系中国科学院院士,本报记者冯丽妃据其在新疆科普专家报告团活动中的发言整理)  《中国科学报》 (2025-12-16 第1版 要闻)
2025-12-16 10:02
种子休眠是指种子在适宜发芽的条件下仍“按兵不动”,直到环境真正安全才“启动”发芽,是农作物在驯化过程中被深刻改造的关键性状之一。研究发现,一个名为MKK3的基因通过“拷贝数+激酶活性”双轮驱动,塑造了大麦在全球不同气候区的休眠节律。
2025-12-16 09:58
区块链、云计算等技术的应用,正推动畜牧业形成从养殖到消费的全程数字化溯源体系,提升整体协同效率,创造产业协同新价值。推动数字技术与畜牧业深度融合,有赖于构建多方参与、协同推进的长效机制。
2025-12-16 09:55
作为国际上首个建成的新一代超大规模、超高精度的中微子实验装置,这里吸引着全世界的目光。细数这一年,更多创新成果从“实验室”走向“生产线”并落地应用场景,创新“势能”向经济“动能”不断转化。
2025-12-16 09:52
深海、极地,这两个词给普通人带来的是神秘又浪漫的感觉。但对于一线科研人员来说,却意味着枯燥与艰辛:在狭小的潜水器球舱里工作9个小时,为了工作甚至不敢多喝水;在零下十几摄氏度的后甲板上作业,海风吹在脸上如刀割般疼痛;在高达13级的风暴中,晕船到无法站立……
2025-12-15 09:56
12月12日中午,在北京中国科学院国家天文台会议室内,研究员刘继峰、王亚楠与中国科学院大学副教授黄样、华中科技大学教授雷卫华等正在聚焦1.2亿光年外的一场“宇宙风暴”—— 一颗恒星被超大质量黑洞撕裂,残骸形成炽热的吸积盘,并驱动喷流同步摆动。
2025-12-15 09:53
加载更多